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Abstract. In this paper, I will explain in as simple and intuitive physical terms as possible what generalized
parton distributions are, what new information about the structure of hadrons they convey and therefore
what picture of the hadron will emerge. To develop this picture, I will use the example of deeply virtual
Compton scattering (DVCS) and exclusive meson electroproduction processes. Based on this picture, I
will then make some general predictions for these processes.

1 Introduction

Scientists have striven for centuries to unravel the dynam-
ics and the structures involved in the physical systems
they have been investigating, from large scale structures
in our universe over biological systems down to the small-
est scales achievable in today’s high energy experiments.
At these smallest scales the questions one is trying to an-
swer are “What are the substructures of hadrons, what
are the dynamics of these substructures and what three
dimensional picture of hadrons is emerging ?”

In the theory of strong or color interactions (QCD)
parton distribution functions (PDFs) encode the long dis-
tance or bound state i.e. non-perturbative information
about hadrons. These PDFs are precisely what we need
in order to construct a dynamical as well as geometri-
cal picture of these objects. Unfortunately, most high en-
ergy experiments analyzing hadronic substructure study
inclusive reactions such as deep inelastic scattering (DIS)
e+ p → e+X; in other words the object they would like
to study is destroyed in the reaction. Although PDFs can
be extracted from inclusive data, these functions are only
single particle distributions precisely because the target
is destroyed and, hence, they depend only on a longitudi-
nal momentum fraction, xBj, and a transverse resolution
scale, µ2. Since inclusive PDFs do not contain information
on the impact parameter of the probe, vital information
about the three dimensional distribution of substructure is
lost and, therefore, these PDFs can only give a one dimen-
sional picture of a hadron. It could be argued that so-called
unintegrated PDFs (see for example [1]) contain more in-
formation on hadrons, since the additional transverse scale
can be interpreted as a relative transverse position. How-
ever, this scale is integrated over in physical observables
and thus no direct information can be deduced from it.
In order to gain insight into a hadron’s three dimensional
structure one has to measure particle correlation functions
which encode additional information on how the object as

a whole reacts to an outside probe in terms of physical ob-
servables. Correlations in hadrons refer to the dynamical
influence during the reaction one or more particles or par-
tons found in a particular state inside the hadron have on
one or more other partons found in a different state inside
the same hadron. A good example would be the transition
of a quark/gluon of a certain momentum into a configura-
tion inside the same hadron with a different momentum or
the removal from the hadron i.e. transition into vacuum,
of a qq̄/gluon pair with a certain momentum configura-
tion. Because of the closeness in meaning between parton
correlation and parton configuration, I will use the two
phrases interchangeably from now on. Note that particle
correlation functions can only be measured if the hadron
stays intact during and after the reaction since the dy-
namical relationship between the different partons would
otherwise be destroyed. This can only be achieved if no
large color forces, responsible for a break-up, occur during
the reaction. This requirement forces such a reaction to
be mediated by color neutral objects such as color singlets
or, at the very least, requires that color is locally satu-
rated. The experimental signature of such a process can
be either a so-called rapidity gap meaning that the pro-
duced particles which are well localized in the detector,
are clearly separated from the intact final state hadron
with no detector activity in between the two, or a small
so-called missing mass, which characterizes the difference
between the initial energy and the sum of the energies
of all the reconstructed particles in the detector. There
are many reactions of this kind, such as hard diffraction
e+ p → e+ p+X or, in particular, deeply virtual Comp-
ton scattering (DVCS) e + p → e + p + γ [2–7] which is
the most exclusive example of hard diffraction. Hard is
meant here in the sense of the presence of a large scale
in the reaction such as a large momentum transfer from
probe to target. In the perturbative QCD description of
fully exclusive hard reactions such as DVCS, we finally
encounter the objects we have been looking for: particle



204 A. Freund: Demystifying generalized parton distributions

� ����

�����

� ����

�����

�����

������

��

� ����

�����

� ����

������

�����

�����

��

� ����

�����

� ����

�����

�����

������

��

Fig. 1. a DVCS graph, b Bethe–Heitler process with photon from final state lepton and c with photon from initial state lepton

correlation functions. They appear in the collinear factor-
ization theorems of these reactions [6,8] where “collinear”
refers to the physics being dominated by what is happening
on the light cone neglecting internal transverse momenta.
Factorization theorems state that, within QCD, one can
factorize the leading term in the cross section or scattering
amplitude of a particular hard reaction to all orders in per-
turbation theory into a convolution of a finite or infra-red
safe, hard scattering function and an infrared sensitive,
non-perturbative function, a PDF. The remaining terms
in the cross section or amplitude are suppressed in the
large scale of the reaction and can be disregarded, at least
in the limit of very large scales. The hard scattering func-
tion is particular to each reaction but computable to all
orders in perturbation theory. The PDFs which are uni-
versal objects and can be used in other hard, exclusive
reactions, cannot be computed within perturbative QCD
save for their momentum scale dependence induced by the
renormalization of the theory. They are given, in a quan-
tum field theoretic language, as a Fourier transformation
of a matrix element of non-local, renormalized, operators.
The key thing, in this context, are the in and out states of
these matrix elements. In inclusive reactions such as DIS,
the in and out states are the same, since the scattering
amplitude can be directly related through the optical the-
orem to a reaction which has the same in and out state.
In hard, exclusive reactions the in and out state differ, at
least, in their momenta. This is due to a finite momentum
transfer in the t-channel of the reaction onto the outgoing
hadron, most commonly a nucleon. These PDFs depend on
more variables, namely those characterizing the momen-
tum difference of the in and out state, than the PDFs in
inclusive reactions which only depend on one momentum
variable, apart from the momentum scale dependence and
therefore carry only one dimensional information on the
hadron. The behavior of these PDFs, called generalized
parton distributions (GPDs) [2–5,9,10], under a change of
their variables encodes the response of the entire hadron,
i.e. its substructure, to the outside probe. Therefore, these
GPDs are particle correlation functions, more precisely
light cone particle correlation functions, and a complete
mapping in all their variables through experiments would
give us for the first time a full three dimensional picture of
hadrons. Please note here that GPDs are by no means the
only particle correlation functions encountered in high en-

ergy reactions. For example, so called, higher twist matrix
elements in DIS, which contain more than just two elemen-
tary operators, are correlation functions since the momenta
of the third, fourth etc. operator in the matrix element
depend on the momenta of the other operators involved.
Furthermore, generalized distribution amplitudes [11–13]
encountered in exclusive γγ∗ reactions or transition GPDs
in, for example, e + p → e + n + π+ are also correlation
functions (for a review see [12] and references therein).
Since the aim of this paper is not completeness but rather
an intuitive understanding of at least some of the physics
involved, we will only discuss the afore-mentioned GPDs
and their physical implications.

In order to directly extract GPDs from experiment
one has to access scattering amplitudes. Unfortunately,
the cross section for exclusive processes is the amplitude
times its complex conjugate, |A|2, compared to inclusive
processes where the cross section is just given by the imag-
inary part of the amplitude. Though we are accessing both
the real and the imaginary part of the amplitude in exclu-
sive processes, their phase structure i.e. each part individ-
ually, cannot be cleanly separated unless there is a “phase
filter”. A ”phase filter” would be a well understood process
with which the exclusive reaction interferes. Fortunately,
there is such a process in the case of DVCS, the QED
Compton or Bethe–Heitler (BH) process (see Fig. 1), first
discussed in [14]. The interference term between the two
processes allows one to directly access both the imaginary
and the real part of the DVCS scattering amplitude which
contain, simultaneously, four distinct structures, namely
H, an unpolarized amplitude with no hadron spin-flip, H̃,
a polarized amplitude with no hadron spin-flip, E , an un-
polarized amplitude with hadron spin-flip and Ẽ , a po-
larized amplitude with hadron spin-flip. The imaginary
part is accessible through the measurement of the beam
spin asymmetry (longitudinal polarization in and opposite
to the beam direction) also called single spin asymmetry
(SSA) and the real part through the beam charge asymme-
try (reversal of the lepton charge) or simply called charge
asymmetry (CA) [7,15,16]. This “filtering” has been aptly
named “nucleon holography” by the authors of [17], since
it employs the same principle of interference as regular
holography. Note that the nucleon spin-flip is only made
possible because of a finite momentum transfer t onto the
final state nucleon as compared to DIS where t = 0 and
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thus there is no spin-flip. This last statement means that
E and Ẽ have no inclusive analog and hence contain unique
information on the nucleon only accessible in exclusive re-
actions.

Note, furthermore, that whereas on the amplitude level
we have “nucleon holography”, on the deep structure level
of the GPDs we will, as I will explain in a later section,
have “nucleon tomography” [18] (see also [19]), since for
each value of xBj and each value of t we are studying the
dynamics of a slice of a nucleon and so, when we put all
of the slices together we obtain a three dimensional image
of a nucleon, as one obtains a three dimensional image of
a person when putting enough MRI pictures together.

In Sect. 2, I will define GPDs and then develop a picture
of what they mean in an intuitive way based on the example
of DVCS and exclusive meson production. In Sec. 3, I
will make general predictions about DVCS in particular
and hard exclusive reactions in general at facilities such
as the planned EIC at BNL, the proposed HERA III or a
dedicated fixed target experiment. I will then conclude in
Sec. 4.

2 What is the physical picture GPDs convey?

2.1 GPD definition

Whenever I will talk about GPDs in the following, I will re-
fer to GPDs in a nucleon, since I will mainly concern myself
with hard electroproduction reactions involving protons.
However, the statements below are much more general in
nature and apply to any hadron target. For brevity and
ease of presentation, I will restrict myself to nucleons.

GPDs, first implicitly introduced in [2] and later redis-
covered in [3,5], are generally defined through the Fourier
transform of matrix elements of renormalized, non-local
twist-two operators. Twist-two operators are composite
operators containing only two elementary fields of the the-
ory. These are situated at different positions on a light
ray making them non-local and are sandwiched between
unequal momentum nucleon states. The essential feature
of such light cone parton correlation functions, where the
difference in the in and out state is responsible for the cor-
relations, is the presence of a finite momentum transfer,
∆ = p− p′, in the t-channel (p, p′ are the initial and final
state nucleon momenta). Hence, the partonic structure of
the nucleon is tested at distinct momentum fractions.

There are many representations of GPDs [2,3,5,20,21].
In this paper I will use the off-diagonal PDFs, F i(X, ζ), de-
fined by Golec-Biernat and Martin [20] and used in the nu-
merical solution of the renormalization group or evolution
equations in [22] (for other treatments see [20,21,23,24]).
This representation will allow us a very intuitive insight
into GPDs as I will explain now.

The GPDs in this representation depend on the mo-
mentum fraction X ∈ [0, 1] of the incoming proton’s mo-
mentum, p, and the skewedness variable ζ = ∆+/p+ (so
that ζ = xBj for DVCS and meson production). This is
analogous to the case of forward PDFs where xBj is also
defined with respect to the incoming proton’s momentum.
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Fig. 2. The relationship between Fq(X, ζ), F q̄(X, ζ) and
Hq(x, ξ) with x ∈ [−1, 1] and X ∈ [0, 1]

For the quark case, the relationship of the quark and
anti-quark distributions, Fq(X, ζ),F q̄(X, ζ), to the more
widely used Hq(x, ξ) [3] where the GPDs are defined with
respect to the average of p and p′ (x ∈ [−1, 1] and ξ =
ζ/(2 − ζ) ∈ [0, 1]) is shown in Fig. 2. More explicitly, for
x ∈ [−ξ, 1]:

Fq,a

(
X =

x+ ξ

1 + ξ
, ζ

)
=
Hq,a(x, ξ)
1 − ζ/2

, (1)

and for x ∈ [−1, ξ]

F q̄,a

(
X =

ξ − x

1 + ξ
, ζ

)
= −Hq,a(x, ξ)

1 − ζ/2
. (2)

The two distinct transformations between x and X for
the quark and anti-quark cases are shown explicitly on
the left hand side of (1) and (2). There are two distinct
regions: the DGLAP region, X > ζ (|x| > ξ), in which
the GPDs behave like regular parton distributions and
obey a generalized form of the so-called DGLAP equa-
tions for PDFs, and the so-called ERBL region, X < ζ
(|x| < ξ), where the GPDs behave like distributional ampli-
tudes/meson wavefunctions and obey a generalized form of
the ERBL equations for distributional amplitudes [20–24].
In the ERBL region, due to the fermion symmetry, Fq

and F q̄ are not independent anymore. In fact Fq(X, ζ) =
−F q̄(ζ − X, ζ), which leads to an anti-symmetry of the
unpolarized quark singlet distributions (summed over fla-
vor a), FS =

∑
a Fq,a + F q̄,a, which is C-even, about the

point ζ/2 (the C-odd non-singlet and the C-even gluon,
Fg, which is built from xHg(x, ξ), are symmetric about
this point). For a detailed review of the mathematical prop-
erties see, for example, [4].

The operator definition of the F ’s is analogous to the
one for the H’s:

Fq(X, ζ)

=
∫

dz−

4π
e−i(X−ζ)p+z−〈p|ψ̄

(
z−)

Pγ+ψ (0) |p′〉,

Fg(X, ζ) (3)
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=
∫

dz−

2πXp+ e−i(X−ζ)p+z−〈p|G+ν
(
z−)

PGν+ (0) |p′〉,

except that the Fourier conjugate momentum fraction, the
light cone positions and the momenta of the in and out
states are different compared to the symmetric approach.
Note that one could have, more conventionally, chosenX to
be the Fourier conjugate momentum to z−. Since the cru-
cial pointsX = 0 andX = ζ are related via the above sym-
metry arguments, it does not matter whether one chooses
one or the other. Nonetheless, the variableX−ζ will prove
convenient later on since it will be zero for X = ζ which
is a special point and signals that large, strictly speaking
infinite, light-like separations of the operators will play a
very important role in the GPD. As we will see below,
this point in the GPD is of paramount importance in hard
exclusive reactions like DVCS and meson production. In
the symmetric representation [3], the uniqueness of this
point in terms of separation of operators on the light ray
is not as obvious and thus I prefer a representation here
where the uniqueness of this point is directly apparent.
This does not mean that one representation is better than
another but rather that sometimes one representation is
more convenient to use than another.

Below, I will refer quite often to valence and sea quark
distributions. In terms of (3) the valence or C-odd non-
singlet quark distribution of a flavor a is defined as

Fa
val = Fq,a − F q̄,a (4)

such that the first moment in X, summed over all flavors,
yields the number of quarks in the proton, and the defi-
nition of singlet quark distribution for a given flavor a, a
C-even GPD combination, is

FS,a = Fq,a + F q̄,a, (5)

which gives the sea quark distribution of flavor a

Fq,a
sea =

1
2

[
FS,a − Fa

val
]

= F q̄,a
sea . (6)

Note that in the ERBL region, as pointed out above, the
quark and anti-quark distributions are not independent
from one another anymore and one can only speak of non-
singlet and singlet distributions per flavor a without being
able to separate out the sea.

2.2 Why does DVCS help us understand GPDs better?

The first question one has to answer is: Why is it that
DVCS (see Fig. 1) is the cleanest process within which to
measure GPDs in a nucleon? The reason for this is quite
simple. With a real photon, one has an elementary, point-
like particle in the final state rather than a bound state
like a meson or an even more complicated state like sev-
eral mesons/hadrons or jets adding other unknown, non-
perturbative functions. Note that the contribution of the
non-point-like part of the real photon wave function which
is similar to a meson wavefunction, is power suppressed in

P

q q’

x2P

P’

+ crossed diagram
x1P

Fig. 3. LO handbag diagram for DVCS. Here x1 = X and
x2 = X − ζ

DVCS [5,6]. The factorization theorem for the DVCS scat-
tering amplitude [5,6] is merely a simple convolution of a
hard scattering function with only one GPD rather than
with a GPD plus another non-perturbative function as
in meson production. To be more precise, DVCS is only
sensitive to a charge weighted C-even GPD combination
(
∑
a e

2
aFS,a =

∑
a e

2
a(Fq,a + F q̄,a)) in leading order (LO)

of perturbation theory (the gluon GPD enters only in next-
to-leading order (NLO)), which is the flavor sum over the
singlet quark distribution for a given flavor a. Hence, DVCS
does not discriminate between different quark flavors as
for example exclusive π0 production does due to its quark
content specific final state.

The DVCS amplitude is T � ImT ∝
∑
a e

2
aFS,a(ζ, ζ,Q2)

in LO (see for example [2, 3, 5]). This is true up to ζ =
xBj � 0.2–0.3 even when taking NLO effects into ac-
count [15,16,25,26]. Hence, DVCS is dominated, at least in
a very broad region of phase space, by the crossover point
between the DGLAP and ERBL region. At this particu-
lar point in phase space, X = ζ, the parton line carrying
momentum fraction x2 in Fig. 3 is becoming “soft” and
all the momentum is carried by the incoming quark with
fraction x1 = X = ζ. Also note that the quark connecting
the two photon vertices, which is usually hard i.e. has a
large virtuality, is on or almost on mass shell and carries
only a large − momentum (see again Fig. 3). Factorization
for DVCS still holds in this situation [6], with the hard
interaction now being the photon–quark vertex, however,
the point X = ζ in the GPD is indeed rather peculiar.
One should recall that the GPD is defined by a Fourier
transform of a non-local matrix element on a light ray and
that the Fourier conjugate variables are the light-ray sep-
arations z− between operators and a momentum fraction
variable. Here this is either X or X − ζ (see (3)). This
means then that for X − ζ → 0 , z− → ∞, and therefore
the operators have an infinite separation on the light ray
or more physically speaking that there is bad resolution
of the probed object in the − direction on the light cone.
This situation is analogous to inclusive DIS in the limit of
xBj → 0. Thus inclusive scattering at small xBj and DVCS
up to a large xBj in or, at least, near the valence region
(Fa

val > Fa
sea) is dominated by the same type of particle

configurations with the only difference being that the con-
figurations in DVCS remain correlated since the proton
stays intact! What does the last statement mean from a
physical point of view?



A. Freund: Demystifying generalized parton distributions 207

2.3 The physical picture of DVCS
and its connection to GPDs

The answer to the last question in Sect. 2.2 is simply: The
particle configurations/correlations dominating the DVCS
cross section are much bigger, in their extension on the
light ray, than the probed object itself. Since the produced
photon is a point-like object these particle configurations,
which one would normally call “end-point” contributions,
are not suppressed as in, for example, a meson wave func-
tion describing an object of “finite” size1! This suggests
that even in the valence region, one is not probing the ac-
tual bound quark structure of both valence and sea but
rather QCD vacuum fluctuations as influenced by and in-
teracting with this bound state quark structure. By QCD
vacuum fluctuations, I refer to the existence of two sepa-
rate contributions, a non-perturbative and a perturbative
one. The perturbative QCD vacuum fluctuations will be
discussed in detail in Sect. 2.4 when I discuss the origin
of the dominant parton configurations in DVCS, and the
non-perturbative QCD vacuum fluctuations can best be
described as the spontaneous fluctuation of color fields into
qq̄ pairs as well as the formation of topological non-trivial
color field structures like instantons [27].

Note a caveat here, though: The operators are not
literally separated by an infinite light-like distance, this
would only be true in the limit Q2 → ∞, but rather
by a distance which is inversely proportional to, at most,

X − ζ = ζ
Λ2

QCD
Q2 [28] which acts as a lower bound and is

motivated by considering the fact that the intermediate
quark in Fig. 3 is not exactly on mass shell. To be definite
compare this to DIS at xBj = 0.2 and an initial, non-
perturbative, scale Q2

0 = 1 GeV2. X − ζ = X − xBj would
then be bounded by 0.2 ·(0.2)2/1 = 0.008, which is not too
small but still 2.5 times smaller, and at Q2 = 5 GeV2, 125
times smaller, than the respective momentum fractions en-
countered in DIS. The basic claim is: DVCS probes a larger,
light-like distance than DIS for the same xBj.

There is a very intuitive picture of why the above inter-
pretation is indeed true and one is not really probing the ac-
tual non-perturbative bound state structure of the proton
within DVCS but rather the quark and gluon configura-
tions which are not relevant for the bound state. Consider
the following situation (Fig. 4) at a low momentum scale
Q: In the infinite momentum frame, the proton is moving
along the + direction of the light cone i.e. in the positive 3
or + z direction with each bound state quark carrying on
average a momentum fraction, X � O(0.1) � xBj. If such
a quark were to be struck by a virtual photon which has
large + (−xBjP+) and (−Q2/2xBjP+) components with
P+ � O(Q), it would then only have a large − compo-
nent but a quasi-zero + component since X � xBj. This
means that the struck quark would have a large momen-
tum in the −z direction, opposite to that of the other

1 The endpoints, x = 0 or x = 1, where the asymptotic pion
wave function 6x(1 − x) vanishes, corresponds to an infinite
light-like separation of the operators in the associated matrix
element 〈0|ψ̄

(
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Fig. 4. Stylized picture of how striking a valence quark and
creating a real photon will lead to a proton breakup
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Fig. 5. Stylized picture of how DVCS proceeds through sea
configurations. The empty circle corresponds to possible par-
tonic sea configurations through which DVCS can proceed, the
empty circle struck by the virtual photon corresponds either of
the previous configurations interacting with the virtual photon
and the empty circle emitting a real photon corresponds to the
possible creation mechanism through parton annihilation or
radiation

two quarks, then radiate a real photon which moves in
the −z direction. After radiating the photon, the quark
will then become “soft” i.e. has no large momentum com-
ponents. The transition matrix element i.e. the overlap
integral, between an initial state with n2 bound collinear
or “fast” quarks to a final bound state with n−1 collinear
quarks and one soft or “slow” quark is suppressed. This
is due to the probability of two collinear and one “soft”

2 n = # of quark Fock states with large momentum fractions
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quark forming a proton in the final state being linearly
suppressed with the relative light-like separation or in mo-
mentum space with the momentum fraction, X− ζ, of the
“slow” quark (see (53) of [29]). DVCS, however, is observed
at large xBj [30] and low Q, therefore, the only alterna-
tive picture (Fig. 5) is the one where the virtual photon is
not scattering on a bound state quark but rather on a q/q̄
from sea configurations/QCD vacuum fluctuations which
are not relevant for the actual bound state. In these config-
urations the q/q̄ has a large + momentum fraction which
is at large xBj thus making DVCS rare, matching the one
from the virtual photon. In other words, the struck q/q̄
starts to move in the −z direction and then annihilates
with a “soft” (X − ζ � 0) q̄/q from the sea into a real
photon or radiates a real photon and becomes “soft”. This
real photon has a large − momentum i.e. moves along the
−z direction, as it should. None of the bound state quarks
are directly involved in the reaction and therefore, it is
not very difficult for the proton to stay intact. This state-
ment can be equivalently recast in saying that the physics
of the bound state itself is not disturbed by the reaction.
This implies that the bound state quarks themselves will
mainly be found in symmetric configurations as in DIS.
Also note that for the asymmetric, “fast” → “slow”, con-
figurations above, there will be no large color forces since
color is conserved locally through either event. The above
has consequences for the quark GPD with its valence and
sea part. For X ∼ ζ, where the configurations are asym-
metric, the non-perturbative valence distribution will be
suppressed compared to the inclusive case as well as the
unknown part of the non-perturbative sea necessary for
the bound state.

The inclusion of gluons (their contribution is suppressed
by αs) does not change the above developed picture and
interpretation. To produce the required asymmetric gluon
configuration, the collinear gluon, with + momentumX �
O(ζ), has to split into a qq̄ pair: a hard q/q̄ with large +
and transverse momentum, interacts with the γ∗, after
which it remains hard but now with large − rather than +
momentum, and then annihilates with the other hard q̄/q
which has only large negative transverse momentum, into
a real photon with only large − momentum. The soft gluon
X− ζ � O(0) for the color matching of the collinear gluon
can be absorbed/radiated from either q or q̄. This will leave
the proton intact since, once more, the bound state quarks
are not directly involved and color is locally conserved. The
reader might wonder why gluons with X 	 ζ seem not to
contribute to the imaginary part of the amplitude, even
though formally they do? The answer to this question is
an empirical one. Formally the imaginary part of the gluon
amplitude is given by

Im T g,V/A
DVCS (ζ,Q2) =

1
Nf

(
2 − ζ

ζ

)2

×
[∫ 1

ζ

dX
[
ImT g,V/A (z)

(
Fg,V/A(X, ζ) − Fg,V/A(ζ, ζ)

) ]

+ Fg,V/A(ζ, ζ) Im
∫ 1

0
dX T g,V/A (z)

]
, (7)

with an identical structure for the quark part. Note that
the second term in (7) is proportional to the gluon GPD at
the point ζ and this second term is usually the dominant
contribution up to a ζ � 0.1. Furthermore, in the integral
of (7), the regionX � O(ζ) does, contrary to expectations,
contribute a fairly large part to the value of the integral. In
consequence one can indeed say that for small to medium
ζ the simplified picture from above is indeed the correct
one.

For small xBj, the picture does only change in so far
as that there are now no bound state quarks anymore
which are “visible” to the probe, and DVCS definitely has
to proceed via the above advocated asymmetric parton
configurations which, at a non-perturbative scale, should
be mainly found in the sea.

There are two things to note here; first, the above men-
tioned sea configurations will be very rare at low Q and
any xBj, making DVCS a rare event compared to DIS, and
secondly, that these sea configurations cannot directly be
identified in inclusive DIS, since this would require too
large a light-light separation as compared to the one al-
lowed in DIS.

Thus, one can conclude that first, there exist asymmet-
ric parton configurations/correlations in the proton, not
directly associated with the bound state structure of the
proton. These parton correlations themselves are encoded
in GPDs in the region aroundX � ζ and can only be probed
in hard exclusive reactions like DVCS.

What happens at larger Q2? Is the above picture still
valid?

2.4 The origin of the asymmetric parton correlations

The final questions of the previous subsection are eas-
ily answered when considering the perturbative evolution
of GPDs as Q2 increases: Perturbative evolution i.e. the
change of the GPD under a change in the renormalization
or momentum scale, strongly enhances the X � ζ = xBj
region in the quark singlet GPD. Within the singlet, the sea
is much more enhanced than the valence part, as compared
to the evolution effect in forward PDFs at the same xBj
(see for example [21,22] for a detailed analysis of this phe-
nomenon). This enhancement effect is driven by the gluon
GPD which itself is not as strongly enhanced as the quark
GPD, and the structure of the perturbative evolution ker-
nels [31] favoring splitting into asymmetric configurations.
This is similar to the inclusive case where the gluon PDF
drives the rise of the quark sea; however, not as strong as
in the GPD case at X � ζ. Note that the gluons responsi-
ble for the enhancement at higher Q2 originate themselves
from quarks at higher values of X and lower values of Q2

i.e. are collinearly radiated from the non-perturbative i.e.
low scale valence quarks in the proton which are found not
in asymmetric configurations but rather in symmetric ones
as encountered in DIS. Thus evolution creates more and
more asymmetric correlations inside the proton as it makes
a transition from 〈p| to |p′〉 and hence the valence quarks
at low Q2 become more and more “dressed” at higher Q2

(see Fig. 5) or, equivalently, their correlated, perturbative
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substructure, the sea or perturbative QCD vacuum fluctu-
ations, is more and more revealed as the scale is increased
(see Sect. 2.6) making DVCS more and more likely without
having to change the actual reaction mechanism. One can
say then that at low Q2 and large X 
= ζ (disregarding
the t dependence for the time being) the quark GPD and
the inclusive quark PDF should be the same since they are
both dominated by the same type of symmetric configura-
tions at low Q2. However, since the evolution is different
for the GPD and PDF the two will be different at higher
Q2. In summary, at large Q2 and any xBj the asymmetric
parton correlations responsible for facilitating DVCS are
almost exclusively perturbative in nature.

The question of the origin of the asymmetric parton
correlations at low Q2 where perturbative evolution is ei-
ther not valid anymore or its use is questionable, is more
difficult to answer. They should be a non-perturbative fea-
ture of QCD vacuum fluctuations rather than the valence
structure which is found in much more symmetric config-
urations as discussed above. Also, one might expect that
non-perturbative asymmetric configurations would be sup-
pressed since they would look like end-point configurations
in a meson. At large xBj where the valence quarks of the
proton dominate, the expectation would be that there are
no or very few such asymmetric correlations (see Fig. 4).
However, at very small xBj, when one enters the high gluon
density or non-linear regime, one might still be able to an-
swer the question from a perturbative point of view. This
is true as long as the natural scale of the problem is the so-

called saturation scale Qs =
(
x0
xBj

)λ
·Q0 with λ ∼ 0.15–0.2

and x0, Q0 some reference/normalization scales where the
small x evolution starts. This means that Qs will be large
at small xBj. Saturation refers here to the effect that in the
regime of large color fields the overlap of gluon wavefunc-
tions lead to destructive interference effects which are char-
acterized by essential non-linearities in the relevant small
xBj evolution equations for the color correlators, for exam-
ple dipoles (see for example [32] and references therein).
These non-linearities slow down the rapid increase of the
number of gluons in the nucleon as xBj decreases. This does
not mean that the photon has virtualityQ2

s but rather that
the internal scale of the gluon couplings in the system is
αs(O(Q2

s )), which is small at sufficiently small xBj rather
than αs(Q2) which atQ2 ≤ 1 GeV2 is large. This statement
deserves a further explanation since it is counter-intuitive.
It is most easily understood in the color dipole model (see
for example [42] and references therein) where the DVCS
amplitude is given as a convolution of a virtual photon
wavefunction with a dipole cross section and a real pho-
ton wavefunction. One can easily show [32] that the Q2

dependence resides solely in the wavefunction and that
the dipole cross section depends only on xBj, x0, Q0 i.e Qs.
The small x evolution determines how σdipole changes as
xBj decreases, independent of Q2. The scale Qs is deter-
mined by λ which in turn is given by the relative change in
ln(1/xBj) of the slope of the dipole distribution in dipole
size r at the point where the distribution is about 1/2
(see [32] and references therein). To be more precise, in

the evolution equation for the color correlator, which is
essentially σdipole, αs appears underneath the convolution
integral of the evolution kernel with a combination of lin-
ear and non-linear color correlators. On inspection [43,44]
it turns out that the main contribution to the convolution
integral stems from dipole sizes of O(1/Qs) in the case of
running coupling. Contributions of larger dipoles (infra-red
contributions) are suppressed by the non-linearity (this is
also true for fixed coupling) and contributions from very
small dipoles (r → 0, k⊥ → ∞, ultraviolet contributions)
are sufficiently suppressed due to the smallness of αs. This
is not the case, by the way for the fixed coupling case. The
key observation is therefore that the smallness of αs, if
Qs is large, allows a perturbative treatment of the gluonic
degrees of freedom and thus their evolution in xBj, despite
that fact that the color fields are very large. Note, however,
that this does not imply that the DVCS amplitude or the
total DIS cross section for that matter, is entirely pertur-
bative at small xBj. But rather that the change in σdipole
with xBj is, whereas the non-perturbative information at
small Q2 resides in the photon wavefunction and in the
initial condition for σdipole at x0, Q0.

In the above regime, one can therefore say that asym-
metric configurations again originate from perturbatively
treatable gluon configurations, as at largeQ2, though these
configurations come from completely different regions of
phase space and thus correspond to a different aspect of
QCD vacuum fluctuations as compared to the ones at
large Q2. Let me add a note of caution here as far as the
identification of high density gluons with a gluon GPD is
concerned. The non-linear, small xBj evolution does not
rely on a twist expansion but rather includes all twists. In
fact higher twist contributions provide the essential non-
linearities in the evolution equations.

In summarizing one can say that the main source of
the asymmetric parton configurations are gluons originat-
ing themselves either from symmetric valence configura-
tions at a lower scale or are part of non-perturbative QCD
configurations at small xBj.

2.5 Meson production and GPDs

If one were to consider other reactions like meson produc-
tion, the situation, previously discussed, obviously changes
since one does not want to produce an elementary parti-
cle which is predominantly point-like and therefore easily
allows particle configuration of “infinite” extent in its cre-
ation, but rather a bound state with a “finite” size. As
I will explain below, only some details are adjusted; the
overall picture, however, remains unaltered.

As in DVCS in LO of perturbation theory, the imagi-
nary part of the scattering amplitude in meson production
is proportional to F(ζ, ζ,Q2). Depending on the produced
meson i.e. its quantum numbers, a particular combina-
tion or particular types of GPDs are probed in contrast
to DVCS where only the quark singlet is directly probed.
Therefore, the mesons act as a “GPD filter”. For exam-
ple π0 production, being a pseudo-scalar, singles out the
polarized quark GPD in an unpolarized reaction [8]!
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Consider the following picture of meson production,
again in the infinite momentum frame: The proton moves
along the + direction of the light cone and is struck by a
highly virtual, longitudinally polarized (so as to maintain
factorization) photon, again having large + and − light
cone momenta. In order to produce a meson there has to
be the exchange of at least one gluon or equivalently the
splitting of a gluon into a qq̄ pair. These can be, in keeping
with the factorization theorem for meson production [8],
either hard or collinear to the proton i.e. the + direction,
or collinear to the produced meson i.e. the − direction. We
are now particularly interested in the situation when the
struck collinear quark in the proton (valence or not) carries
the initial momentum fraction X � xBj with another ac-
companying quark/anti-quark being “soft” i.e. X − ζ � 0
as in DVCS. This situation can only be achieved through
the exchange of at least one hard gluon. One can also
probe the gluon GPD directly, as in, for example, J/ψ
production [8] at small xBj where the gluon dominates.
This corresponds to the case when a collinear gluon carry-
ing momentum fraction X � xBj, splits into a qq̄ pair, one
of which interacts with the virtual photon and the other
one with a second, “soft”, gluon. They then go on to form
the meson in the final state. In both instances, one directly
probes the point X = ζ = xBj in the GPD associated with
a large light-like separation of operators as in DVCS.

Let me discuss the quark case first and then speak
about the gluon case. When the collinear quark, which
will eventually interact with the virtual photon, radiates
a hard gluon, the quark itself becomes hard. We need the
situation where the + component of the hard gluon is small
i.e. it is on or almost on mass shell, in exact analogy to
the quark connecting the two photon vertices in DVCS in
Fig. 3 for the situation X � ζ as explained in Sect. 2.3.
The quark remains hard, and, at the photon–quark ver-
tex, the struck quark starts to move along the − direction,
since the + components of the virtual photon and quark
cancel. The gluon now splits either into a qq̄ pair with the
anti-quark carrying large − momentum or it hits a “soft”
anti-quark in the proton transferring its large − momen-
tum. In both instances the soft quark will be associated
with the proton. In order to keep the proton intact, the
struck collinear quark could not have been a valence quark
since there would be no other collinear i.e. “fast” quark
to replace it, only a “soft” i.e. slow one. Thus it must
have come from a non-valence-like configuration leaving
only the sea. In this way, the situation is analogous to the
DVCS case. Hence, the interpretation of the exact particle
configurations probed in the GPD in meson production
compared to DVCS for X � xBj does not change for the
case of quark scattering. What happens when we have a
collinear gluon as mentioned above?

The situation is quite similar to the quark case. To
produce an asymmetric configuration, the collinear gluon
has to split into a hard qq̄ pair where either the hard q
or q̄ has to go on or near mass shell only carrying large
− momentum, implying that the initial, collinear gluon
has a + momentum fraction X � ζ, and then radiating
a “soft” gluon required to match the color of the initial

gluon. Again we have the same situation as in the quark
case and therefore the same interpretation, except that
we have now the gluon GPD rather than the quark GPD
at X = ζ as already stated above. The origin of these
asymmetric gluon configurations is the same as the one
for the quark case as explained in Sect. 2.4.

The fact that the interpretation about dominant parti-
cle configurations encoded in the GPD does not change in
going from DVCS to meson production means that GPDs
are indeed universal objects as already proven to all orders
in the factorization theorems [6, 8]. However, it is nice to
see how this universality emerges from the simple physical
picture above. Again, I would like to stress that this picture
of dominant particle configurations in meson production is
only valid if the imaginary part of the scattering amplitude
is larger than the real part. In fact, for the real part where
the regions X 	 xBj and X � xBj are very important, va-
lence quarks and symmetric gluon configurations do play
an important role. This is due to the fact that the region
of phase space where the exchanged gluon or q and q̄ is
hard, becomes large. It is also clear that, as the mass of
the produced vector meson or Q2 increases, it starts to act
in a similar fashion to a point particle i.e directly emerges
from the hard scattering space-time point.

The above also shows that the questions one asks of the
proton in DIS and hard, exclusive reactions are different.
In DIS, on the one hand, one asks the question if there
are partons with large or small momentum fractions in the
proton, in hard, exclusive reactions, on the other hand, one
asks the much more specific question of how the partons
in the proton must conspire to make the reaction happen
and therefore one obtains a much more specific answer.
One can then conclude that there exist asymmetric parton
configurations/correlations in the proton, the exact nature
of which can only be probed in hard exclusive reactions like
DVCS or meson production. These parton correlations are
encoded in a GPD in the region around X � ζ.

2.6 The t and Q2 dependence of GPDs

Up until now, I have neither talked about the role of the
t dependence nor of the precise meaning of Q2 or more
precisely the renormalization scale µ2. In [33], a beautiful
exposition of the physical meaning of these two variables
for GPDs has been given (see also [34]) which I will only
briefly reiterate: The scale µ2 defines from what scale, or, in
space-time, from what resolution in the transverse plane,
onwards one can speak of several partons or just one par-
ton. In other words, the better the resolution 1/Q ∼ 1/µ of
the probe, the more partons or substructure of one parton
one can observe (see Fig. 5). As µ defines the resolution of
the parton in the transverse plane, the t dependence gives
the relative transverse position of the probed parton corre-
lation with respect to the proton (see Fig. 4). If µ2 � −t =
several GeV2, the exact meaning between resolution and
position becomes lost, including the above simple picture of
DVCS and meson production, since the hierarchy of scales
necessary for a factorized approach to these processes is
lost and hence also its simple physical picture.
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In contrast, in the case of µ2 = Q2 	 −t, one has a
very interesting picture emerging (see Fig. 5): since t is up
to corrections of O(M2

Nζ
2), which are very small, equal to

−(p⊥ −p′
⊥)2, the relative transverse momentum difference

between initial and final state, a small t corresponds to a
large distance in the transverse plane from the proton “cen-
ter” and large t to a small distance. Here “center” is meant
with respect to the relative transverse positional difference
between initial and final state. The question which arises
now is where, relative to this “center”, the asymmetric
parton correlations take place.

As far as the perturbatively generated correlations hav-
ing a resolved size of O(1/Q) in the transverse plane are
concerned, they will take place closer to the “center”, since
they are associated with the valence quarks through evolu-
tion and those have to be situated well within the proton
radius, rp ∼ 1 Fermi. The non-perturbative correlations
have to be more clearly separated from the “center” of the
proton. The reason for this lies in the very fact that they
cannot be associated with the bound state structure as
shown above and therefore they will be have to be situ-
ated in the “pion cloud”, for lack of a better word, at the
“edge” of the proton.

The emerging three dimensional picture of the asym-
metric parton configurations as well as their symmetric
“parents” can be stated as follows: The asymmetric par-
ton configurations necessary to facilitate hard, exclusive
reactions are basically located “inside” of the proton as it
makes a transition from 〈p| to |p′〉 during the reaction, with
the non-perturbative configurations towards the edge and
the perturbative configurations more towards the “center”
but very spread out on the light cone. For example, at the
average t in DVCS on the proton of HERMES of about
−0.2 GeV2, these configurations are located only about
0.4 Fermi away from the “center”, clearly “inside” the pro-
ton charge radius rp ∼ 1 Fermi (only for a t < −0.04 GeV2

would they be located “outside” of the proton charge ra-
dius rp). Since we restrict our considerations to the region
of −t ≤ 1 GeV2, the relative distance to the “center” is
never closer than about 0.2 Fermi.

One can now also understand why the cross section of
hard, exclusive processes drops when t is increased and how
this depends on xBj andQ2. To do this, consider the follow-
ing (see Fig. 5): At lowQ2 and fixed xBj, the main source of
the asymmetric configurations will not yet be perturbative
collinear parton splitting as at large Q2, but rather some
non-perturbative property of QCD vacuum fluctuations.
This means that, at lowQ2, as one approaches the “center”
of the proton i.e. as t increases, the number of asymmetric
configurations suitable to facilitate a hard, exclusive event
should drop since the non-perturbative configurations sit
at the edge rather than in the “center”, while at the same
time the perturbative configurations as part of the sub-
structure of the valence quarks, are not as well resolved yet
as at higher Q2 and hence less than at large Q2. In conse-
quence, the average number of asymmetric configurations
available to the reaction is less at larger t than at smaller
t, and as a consequence, the cross section drops faster with
the increase in t at low Q2 than at large Q2. Furthermore,

as xBj decreases i.e. the energy increases, the number of
gluons from which asymmetric correlations can originate
will also increase, since more and more gauge fields will
become “frozen” in the light cone time z+ (see [32] and ref-
erences therein for details) and can thus serve as a source.
This means that the cross section will drop faster with
increasing t at larger xBj than at smaller xBj. Since the
evolution in xBj is less dramatic than in Q2 (see again [32]
and references therein), the effect on the t dependence will
be less.

These observations are borne out both by the obser-
vations made in [35] where a Q2 dependent but basically
xBj independent slope gives very good agreement, within
the experimental errors, between the DVCS data and NLO
QCD calculations and by experimental measurements (see
for example [47] and references therein).

3 Going beyond the nucleon: Qualitative
predictions from the above picture

The above considerations are not limited to a nucleon tar-
get but are also valid for example for a nuclear target.
There are some interesting consequences emerging from
the above considerations: The fact that the same large
light-like distances are involved in conventional PDFs for
xBj → 0 and in GPDs for X � ζ together with the ob-
served enhancement of this region through perturbative
evolution, suggests that for the same xBj of the process,
GPDs probe the configuration content of the proton and
its effect on the QCD vacuum at relatively smaller momen-
tum fractions than PDFs. This is borne out by the analysis
carried out in [35] which shows that a good GPD input
capable of describing all available DVCS data [30, 36, 37]
in a NLO QCD analysis is obtained by using conventional
forward PDFs at a momentum fraction X shifted to a
smaller value by an amount of O(ζ). This in turn implies
the following.

(1) Earlier onset of saturation effects in DVCS observ-
ables dominated by the imaginary part of the scattering
amplitude as compared to inclusive observables. This is
particularly true for nuclear targets since saturation is a
strongly xBj dependent phenomenon [38]! A concrete pre-
diction would be the presence of geometric scaling in the
γ∗p DVCS cross section in either ep or eA scattering up
to an xBj where it normally would break down in F p,A2

3.
(2) Nuclear shadowing corrections for DVCS should set in
at larger values of xBj as compared to the inclusive case.
Moreover, at comparable values of xBj, the nuclear shad-
owing corrections should be stronger in DVCS compared to
DIS. Since nuclear shadowing is only a weak function of xBj
except for the transition region between 0.01 < xBj < 0.1
(see for example [40]), the enhancement effect would prob-
ably be mainly visible in this region [41].

3 Munier and Wallon [39] demonstrate geometric scaling in
exclusive J/ψ production with different scaling curves for dif-
ferent impact parameter i.e. t
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(3) Since varying t changes the relative transverse posi-
tion at which the target is probed, it will allow one to scan
through the “grey” region, where non-linear perturbative
QCD is still applicable, and the “black” or total absorp-
tion region of the target. In these two regions, the target
behavior will be qualitatively different and this difference
should be reflected in different geometric scaling curves for
different values of t (see the above footnote 3). I do not
claim here that DVCS in the black disc limit is very dif-
ferent from DIS in this limit – quite on the contrary [42].
However, the t dependence allows one to discern the dis-
crepancy between two regions of different target behavior.

These predictions could be verified at the future EIC
with its high luminosity both for ep and eA scattering, as
well as at HERA III with nuclei in the HERA ring or a
dedicated, high luminosity, fixed target experiment.

Furthermore, the fact that one cannot really probe the
bound state quark distributions at X = ζ and leave the
proton intact, leads one to conclude that as X → ζ the
non-perturbative unpolarized valence quark GPD should
become small relative to the inclusive valence PDF at the
same xBj or tend even to zero at the input scale. Evolution
will change this and the valence GPD will start to grow also
atX = ζ since higher and higher Fock states will be present
in the valence GPD at higher Q2 as previously discussed
in Sect. 2.4. This prediction is supported by several model
calculations. First, calculations both in the chiral-quark-
soliton model [45], in the constituent quark model [46]
and within a light cone wavefunction approach [29] show
that the valence GPD becomes either small or vanishes
at X = ζ. In the chiral-quark-soliton model, for example,
the contribution to the flavor singlet of the discrete Dirac
spectrum is identified with the bound state quark struc-
ture – both valence and sea – whereas the continuum part
is identified with the pion field itself [45] or what I termed
non-perturbative QCD vacuum fluctuations. The contin-
uum part rapidly changes behavior from an increasing to a
decreasing function which is essentially 0 at the crossover
X = ζ. This is easily explainable if one remembers that the
asymmetric qq̄ fluctuations from the non-perturbative vac-
uum at a low scale correspond to endpoint contributions
in the pion or meson wavefunction which are suppressed.
Note that the continuum contribution is C-even and thus
the individual flavor contributions enter the DVCS ampli-
tude with the square of their respective charges. The bound
state quark distribution has both aC-even andC-odd part,
where the flavor decomposed C-even part contributes to
the DVCS amplitude. In order to replicate the value of this
distribution atX = ζ as well as its functional behavior (see
Fig. 2 of [45]), the value of the C-even and C-odd parts at
X = ζ should be both positive, but smaller than the value
of the total bound state quark distribution. This means
that both the C-even and C-odd or valence distribution in
the DGLAP region have essentially the same functional be-
havior as the total distribution. This means that the sum
of the C-even distribution from the continuum and dis-
crete part as well as the valence distribution yield a falling
distribution towards X = ζ at a non-perturbative scale,

as I advocate. In other words, the required configurations
for DVCS are rare at a non-perturbative scale.

Secondly, since X = ζ corresponds to large light-like
separations as in the inclusive case for xBj → 0, one might
expect that the non-perturbative valence quark GPD actu-
ally vanishes at X = ζ as the forward valence quark PDF
vanishes for xBj → 0. Experimentally, this could be veri-
fied in principle through a flavor separation in νp DVCS
at the COMPASS experiment at very low Q2 with the
two huge caveats of unknown higher twist and a large BH
contribution at very low Q2 and large xBj.

The slope of the t dependence for small values of t in
DVCS at low Q2 ∼ a few GeV2 should be larger than the
one for light meson production for the same kinematics,
whereas at large Q2, the two slopes should be the same
as stated in factorization theorems [6, 8]. The reason for
this is quite simple in the region of xBj and Q2 where
the imaginary part of the amplitude dominates: In meson
production, as pointed out above, both asymmetric quark
and gluon configurations couple to the reaction with equal
strength. Whereas in DVCS the coupling strength of the
quark and gluon correlations are very different, α and ααs
respectively. It is important to note that I do not assume
that the asymmetric quark and gluon configurations have
a different spatial distribution in the transverse plane.

Why is the difference in coupling strength important in
this case ? Because of the difference in coupling strength
compared to meson production the slope in t for DVCS at
low Q2 is quark dominated while in meson production it
is a priori a mixture of quarks and gluons. If quarks and
gluons had the same t slope, then the difference in cou-
pling strength would not matter since percentage wise the
amplitude for DVCS and meson production would change
the same way in t and the t slopes would be indepen-
dent of Q2. If gluons had a larger slope in t than quarks,
one would expect that for large Q2, due to the mixing
of quarks and gluons under perturbative evolution which
equilibrates the slopes of quarks and gluons, the slope for
DVCS or meson production would increase with Q2 since
the slope for quarks would increase. Both of the above
assumptions are not what the data indicate (see for exam-
ple [35, 47]). Rather than a constant slope or an increase,
one observes a decrease of the slope with an increase of
Q2. The fact that the smallest slope is measured in J/ψ
photoproduction which is essentially only sensitive to the
gluon GPD, tells us that quarks and gluons have not only
different slopes in t at Q2 � M2

J/ψ which corresponds to
small transverse distances, but that the slope for gluons is
smaller than that for quarks. Going to even lower scales,
the difference in slope can only increase rather than de-
crease because of the evolution argument. Note once more
that I do not refer to any particular difference between
spatial distributions of quarks and gluons.

If one were to take xBj ≤ 0.01, Q2 � 2 GeV2, integrate
out t and further assume, for simplicity, that the gluon am-
plitude which enters both DVCS and meson production in
this kinematic region with a − sign, is between 30–50% of
the quark amplitude at low Q2 modulo coupling effects,
then it is a simple exercise to show that the effective t slope
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for DVCS is larger than for meson production. Further-
more, it is immediately clear that the difference depends on
the relative difference in coupling strength between quarks
and gluons in DVCS and meson production.

Taking the quark slope to be about 8 and for gluons
to be about 4 seems to be not unreasonable. Furthermore
take αs � 0.3 and the gluon about 50% of the quark. The
effective slope for DVCS i.e. for the square of the amplitude
assuming a t dependence in the amplitude of eBq,gt/2 for
small t, is then about 16/1.79 compared to 16/2 for light
meson production which will be mainly ρ production in
this kinematic range. Taking the ratio of effective slopes of
meson production to DVCS gives about 0.8. The difference
in the ratio from 1 is entirely due to the difference in the
coupling strength between quarks and gluons in DVCS and
meson production respectively.

At large Q2, on the other hand, where there will be
many suitable configurations, originating almost exclu-
sively from gluons, this difference in coupling strength
becomes unimportant due to the very large number of
suitable configurations which leads to an equilibration of
quark and gluon slopes. The conclusion for low Q2 is sup-
ported by the findings in [35] where a larger slope for DVCS
at relatively low Q2 ∼ 2–4 GeV2 was required to obtain a
good agreement between data and theory than in the case
of, for example, ρ0 production [47] with a ratio of the ef-
fective slopes of about 0.7–0.8. That the t slopes for quark
and gluons equilibrate at large Q2 and become universal
as predicted by factorization is seen in the effective slope
for ρ production [47] rapidly approaching the one for J/ψ
production with an increase in Q2, but not going below
that value for even larger Q2.

4 Conclusions

To summarize once more, I have presented a concise, sim-
ple and intuitive picture of what GPDs mean in the sense
of carrying new information about the three dimensional
(two transverse and one light cone dimension) structure of
nucleons (more precisely nucleon to nucleon transitions)
compared to inclusive parton distributions or form factors.
To achieve this I have developed a simple picture through
which type of particle configurations encoded in the GPDs,
DVCS and meson production proceed and that these con-
figurations can only be correctly identified in exclusive re-
actions. These configurations originate mainly from sym-
metric quark configurations through perturbative evolu-
tion. Furthermore, based on this picture, I conclude that
the unpolarized valence quark GPD at a non-perturbative
scale should be either small compared to a an inclusive
valence PDF at the same xBj, or vanish near the crossover
point between the ERBL and the DGLAP region. I have
also made verifiable, qualitative predictions for DVCS and
meson production in ep and eA collisions such as an early
onset of saturation, different geometric scaling curves for
different t values, determining the sizes of the “grey” and
“black” areas of the target, stronger nuclear shadowing
corrections in the transition region 0.01 < xBj < 0.1 and
a difference in the slope of the t dependence at low Q2

between the two processes, using the above picture. These
predictions/conclusions are already partially supported by
both experimental as well as theoretical observations.
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